MTH 605: Topology I

Practice Assignment I

- 1. Show that the topologies \mathbb{R}_{ℓ} and \mathbb{R}_{K} are not compatible.
- 2. Describe a subbasis for the standard topology on \mathbb{R} that is not a basis.
- 3. Show that each of following collections define basis for a topology on X. Describe the topology generated in each case.
 - (a) $\mathcal{B} = \{(a, b) \mid a < b, a \text{ and } b \text{ rational}\}, X = \mathbb{R}.$
 - (b) $\mathcal{C} = \{[a, b) \mid a < b, a \text{ and } b \text{ rational}\}, X = \mathbb{R}.$
 - (c) $\mathcal{D} = \{(a, b) \times (c, d) \mid a < b, c < d, a, b, c \text{ and } d \text{ rational}\}, X = \mathbb{R}^2.$
- 4. If A, B, and A_{α} are subsets of a space X. Determine whether the following statements hold. Prove them if they are true, and give a counterexample if they are false.
 - (a) If $A \subset B$, then $\overline{A} \subset \overline{B}$.
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (c) $\overline{\cup A_{\alpha}} \supset \cup \overline{A_{\alpha}}$.
 - (d) $\overline{A \cap B} = \overline{A} \cap \overline{B}$.
 - (e) $\overline{\cap A_{\alpha}} = \cap \overline{A_{\alpha}}$.
 - (f) $\overline{A-B} = \overline{A} \overline{B}$.
- 5. Show that X is Hausdorff if and only if the diagonal $\Delta = \{(x, x) | x \in X\}$ is closed in $X \times X$.
- 6. If $A \subset X$, we define the boundary of A (denoted by ∂A) by $\partial A = \overline{A} \cap \overline{(X A)}$. Show the following.
 - (a) $A^{\circ} \cap \partial A = \emptyset$ and $\overline{A} = A^{\circ} \cup \partial A$.
 - (b) $\partial A = \emptyset$ if and only is A is both open and closed.
 - (c) U is open if and only if $\partial U = \overline{U} U$.
- 7. Find the ∂A and A° , if A is one of the following subsets of \mathbb{R}^2 .
 - (a) $A = \mathbb{Q} \times \mathbb{R}$.
 - (b) $A = \{(x, y) | 0 < x^2 y^2 \le 1\}.$
 - (c) $A = \{(x, y) | x \neq 0 \text{ and } y = 1/x\}.$